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Abstract

The classical equations of two-phase flow in a porous media are solved together with two transport equations representing the leaching
process. For the two-phase flow we use the pressure-saturation formulation, where the principal variables are the total pressure, the total flux
and the saturation of the liquid phase. For the transport equations the variables of interest are the sulfuric acid and the copper concentration.
The numerical method combines a mixed finite element method with a finite volume method. The first one is used to approximate the total
pressure and flux, while the second is used to calculate the saturation and both concentrations. The advantage of this approach is its capacit
to completely characterize the dynamics of the liquid and gaseous phase, and treat with the same model acid and bio-leaching processes
Several examples show the application of the method.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction Two distinct phenomena are of interest in the study of
heap leaching: fluid flow and the physicochemical reactions.
Most companies, as a result of the favorable economics These two phenomena can be studied separately if the extent
possible in heap leaching, consider heap leaching an alternaeof leaching of an element of solution that has participated in
tive to conventional processing (flotation, agitation and vat this process, and the extent of leaching that an element of
leaching)[12]. This process is considered an integral part of the heap has undergone, does not influence the solution flow
most copper mining operations and should determine, alongpattern. In other words, the solution flow pattern in a heap
with other factors, the cutoff grade of the material sent to the depends only on the initial conditions of the heap. In general,
mill. researchers in heap leaching have separated the fluid flow
Leaching is a transfer process of mass between the leachproblem from the physicochemical problem. We develop a
ing solution (fluid phase) and the ore bed (solid ph&E) mathematical model, which consists in a system of nonlinear
The heap leaching process can be considered as a multiphageartial differential equations, in the context of multiphase sys-
system in a porous medium, where the multiphase systemtem in a porous medium, that considers simultaneously the
is formed by two fluids phases: a liquid phase (leach solu- fluid flow problem and the physicochemical problem. Our
tion) and a gaseous phd8ell]. We consider the case where model generalizes previous models which consider only one
the liquid phase transports two component: the sulfuric acid phase (see for instan§®,9]). For example, our model elim-
(leaching agent) and the copper as species of interest (cfinates the assumption that the gaseous phase pressure is at
[6,9]). the atmospheric pressure, i.e., we consider the interaction
between both fluids phases.
Respectto the numerical solution, we presenta generaliza-
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Nomenclature

Greek symbols and subscripts

volumetric concentration of sulfuric acid in sot
lution (kg/m?)
volumetric concentration of copper in solution
(kg/md)

compressibility of gaseous phase
capillary diffusion coefficient

tensor of hydrodynamic dispersion 4fs)
gravity (m/€)

gravity vector (=00, —g)

ab;;olute permeability of the porous system
(m*)
equilibrium distribution constant (adsorption
coefficient) (nf/kg)
first-order kinetic constant (extraction coeffi
cient) (mf/kg s)

relative permeability of the:-phase (-)
global pressure (Pa)

capillary pressure function (Pa)

entry pressure (Pa)

pressure of-phase (Pa)

fractional flow function (-)

real numbers

residual water saturation (-)
saturation ofx-phase (r/m?3)
concentration (mass of copper/mass of solid
phase) of copper in solid phase (kg/kg)
time (s)

total time of simulation (s)

flow velocity (m/s)

total velocity (m/s)

volumetric (flux or Darcy’s velocity) velocity
of a-phase (m/s)

phase& = w, n)

liquid phase (leach solution)
gaseous phase

total mobility (m s/kg)

phase mobility function (m s/kg)
Brooks—Corey parameter (-)
Lax—Friedrichs parameter
first-order consumption factor (consumption
coefficient) (1/s)

viscosity of thex-phase (kg/ms)

solid bulk (dry) density (kg/rf)

density ofa-phase (kg/r)

porosity of ore bed (volume of void/volume o
bed) (mf/m?3)

volume of solid phase/volume of bed (=1¢)
(m3/m3)

2. Multiphase fluid flow

We consider a multiphase system in a porous medium.
Let a representative elementary volume (REV) ($ép
for more details) in the porous medium formed by the
solid matrix and both fluids phases: liquid and gaseous.
The porosity of the porous medium is defined gs=

volume of the pore space within the RE\. :
volums of REV . and the saturation of phase

; ; _ volume of fluidee within the REV
o IS deflned.as‘g“(x_’ t) " volume of the pore space within the REV
wherea = w is the liquid phase and = n is the gaseous
phase. We impose the customary property that the fluids fill

the volume:

Sw + Sn = 1. (1)

2.1. Compositional flow/transport equations

A mass balance must be specified for each component.
The mass balance equations for the transport of component
k in a-phase can be written §2,71]:

Ipsqc™ .
% + diV(® v — psa DVC®) + g = O, )

where ¢¢ is the volumetric concentration defined by
co — massofcomponerinphaser , ~ the volumetric flux of

Kk volume of phase

phase a, @, (kg/m®s) the irreversible rate of solute
removed (or added) from (to) the liquid solutiod)
the dispersity-diffusion tensor given b9;; = at|uq|6;; +
(L — aT)% + Dméd;j, wherea, ander are the longitudi-
nal and transverse dispersivities, respectiigy= 1ifi = j
ands;; = 0if i # j, andDn, is the molecular diffusion coef-
ficient (in this paper we sddy, = 0) anduy = ¢sq v, iS the
flow velocity of phase.

Inthe case of sorptionf?) is modified to include a retarda-
tion factor. Itis assumed that there is a Freundlich equilibrium
isotherm between the liquid phase and the solid phase. The
isotherm has the form

mass of componentin solid phase,
= . = dc ’
mass solid phase «

[}

whereky is called the distribution coefficient. Using the as-
sumption that sorption only occurs from the liquid to the solid
phase, the equation for the liquid phase can be modified to
include adsorption:

0 F* d(Psacy ;
(#spsFy) (¢2th) + div(cve — psa DV )

ot
+ (p(x - oﬂ (3)

wheregs = 1 — ¢, psis ore bulk density.
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3.1. Mathematical domain and assumptions
where¢ is the porosity of the porous mediumy, sq¢, Va,

In this paper we consider 2D geometfid. 1, transver- are the density, saturation, pressure, volumetric velocity of
sal cut of the heap). The boundary 8fC 9?2, i.e., 32 is thea-phase, and, is the source term (by assumption:=
expressed a&2 =" U’ U r'urr, wherel is the in- 0, « = w, n). As in the single-phase case, it can be shown

put boundary (zone of irrigation);° is the output boundary by volume averaging or homogenization techniques that the
(zone of drainage)™ is the left boundary/™ is the right macroscopic phase velocity can be expressed in terms of the
boundary. macroscopic phase pressure by the generalized Darcy’s law

In this article we consider a heap of leaching of width [7]

W = 25m and heighH = 5m.

In order to simplify our model, we consider a two phase o — _ kkra
flow through a porous medium with the following assump- *~ uq
tions (sed9] for specific details): flow occurs in a vertical
plane 2D, generalized Darcy’s law for multiphase flow is Wherek is the absolute permeability of the porous systems,
valid, the porosity and the absolute permeability are uniform pa, ia, kro @re the pressure, viscosity and the relative perme-
in space and constant with time, the porous medium is non-ability of thea-phase, ang is the gravitational, downward-
compressible, homogeneous and isotropic with respect to thepointing, constant vector. Therefold) and (5)are the two-
transversal and longitudinal dispersivity coefficients, in the phase flow equations (s¢&2,5).
void space there are only two fluids phases: the liquid phase  The pressure at the microscopic level has a jump discon-
(leach solution) and the gaseous phase, the reaction betweefinuity when passing from one fluid phase to the other. The
the acid and the particles of copper minerals proceeds in aninJump is called thecapillary pressure This fact is reflected
stantaneous fashion and is irreversible, the system is isotherby a macroscopic capillary pressure at the macroscopic
mal, the regime of flow is laminar, the physical properties level: pc(x, 1) = pn(x, t) — pw(x, ). The macroscopic con-
of liquid phase are constants, the effect of the transport of sideration of the capillarity results in the following cap-
solutes on the transport of fluid is weak, and not exist massillary pressure-saturation relatiopg(x, 1) = f(sw, sn), but

(VPa — Pug): )

exchange between both fluids phases. sw + sn = 1, thereforep is given by:
3.2. Two-phase flow equations pc(sw) = pn — pw. (6)
Thus, the continuity equatiofig] for each phase = w, n The usual correlations for a two-phase gas-liquid system are

are derived from the mass balance in the REV: the Brooks—Corey (BC) and Van Genuchten (VG) parame-
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terizationg[7]. In this work we use BC, which is defined by G, (s,,, p) = kAngw(on — pw)g, and D(sw) = —kknqw%
’ ' A\

s is the capillary diffusion coefficient. Finally is the total
Sw — Swr Be velocity, given by
pe(sw) = pd <1> . Pc = pd,
— Swr
v ="y + Vn, (1)
where 02 < Agc < 3.0isaBC-parametea(very smalkgc-
parameter describes a single grain size material, while a
very large value indicates a highly non-uniform mateyial
and pq is the entry pressuredpillary pressure required to
displace the wetting phase from the occurring pota this
paperigc = 1, andpg = 101,325 Pa, i.e., the atmospheric and the volumetric velocity of gaseous phase is given by
pressure.
In conjunction with constraingl) and (6), Egs.(4) and  ¥n = dn? + kAwgnV pc — kAwgn(on — pw)g- (13)
(5), represent a coupled dynamic system of differential equa-
tions, which describes the simultaneous flow of two or more 3.3. Transport equations
immiscible fluids in a variable saturation porous medium.
The behavior of the system of equations is strongly nonlin-  The sulfuric acid and the copper ions are transported by the
ear because there is a nonlinear dependence of the saturatioleach solution. The presented equations conform the classical
on the capillary pressures and on the relative permeabilities.transport equations in the context of biphasic/bicomponent
Alternative formulations for systeif#)—(5)—(6)—(1)have flow [1,7] and this formulation generalizes the saturated flow

been developed which depend on the individual problem andin a porous mediurfd] to a biphasic flow.
on the efficiency of the chosen numerical methpgs In Eq. (2) we considerr = w, x = a for the sulfuric acid
andk« = c for the copper. About the notation for the volumet-
ric concentrationcyy = ca andc = c¢, i.e., we omit w.

where the volumetric velocity of leaching solution is given
by

vw = gwV + kingwV pc — kingw(on — pw)g. (12)

e (P-P) pressure formulation: with phase pressures as un-
knowns (primary variables).

e (P-9 pressure—saturation formulation: with the pressure ) ) _
of the fluid with the highest affinity and the saturations of 3-3-1. Sulfuric acid transport equation

the other phases as unknowns. During migration through the porous media (heap) sulfu-
e (S-9 saturation formulation: with phase saturations as 'iC acid reacts with the copper. Acid consumption is assumed
UNKNoOWnS. to be proportional to its concentratiopd;, in (14)), there-

fore, from(2) with @, = ¢swuca, the transport equation of
In petroleum reservoir simulation the governing equations sylfuric acid in leach solution is given by

that describe fluid flow are usually written in a fractional

flow formulation, i.e., in term of a saturation and a global 9(¢swca)
pressure. The main reason for this fractional flow approach  or

is that efficient numerlca_l methods (_:an_be dews_ed to takewhereu is a first-order reaction constant (consumption fac-
advantage of many physical properties inherent in the flow ) and.., the volumetric concentration of acid in leach so-
equations. Therefore, the syste(d3—(5)—(6)—(1) can also
be written in our case 45]:

+ diV(CavW — ¢SwDVCa) + ¢Swl,l/Ca = O, (14)

lution.

dp Lo 3.3.2. Copper transport equation in liquid phase

clsw, ”)E +dive = qlsw, p). ) The transport of copper ions through the heap is mainly
_ _ _ governed by two processes. The first process consists of a

Aswk(Vp — Gi(sw, p)) = v, ® chemical reaction that occurs between the leaching agent and
the mineral particles. The copper present in the ore is solubi-
lized passing from the solid to the liquid phase. The kinetic
involved is a the first ordergkecaSc in (15)) heterogeneous
reaction. Therefore, the first process is extraction of copper
from the solid phase to the liquid phase. The second process
in the copper adsorption/desorption phenomenon, which is

8™ 1 (gl — Galow, p) —~ Dsw)Vsu) =0, (9

with unknowns:p, v, sw, where:A = Ay + Ap is the total
mobility with: Ay = ’;ﬂ is the mobility ofa-phasep is the

total pressure given by

o y % de (10) modeled using a linear equilibrium isotherf{ = kqcc in
p=pn 0 w dg 7’ (15)). Therefore, from(3) with @, = ¢spskecaSc, the trans-
port equation of copper in leach solution is given by
with go = 5%, a=w,n is the fractional flow func-

fon, clow. ) = (L= swlen(p)  Wilh:  culp) = A8 Abpokace) | A0 g, pve
is the compressibility of the gaseous  phase, ot or

q(sw» p) = —=snen(p)gw(dpe/d), Gi(sw, p) = W& + ¢spskecaSc = 0, (15)
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whereke is a first-order kinetic constarfig the concentration  with paim atmospheric pressure. Forby (11), is sufficient
of copper associated with the solid phase (t6)) andc. the to specify boundary conditions fay, andwy:
volumetric concentration of copper in leach solution.
vw(x, 1) - n(x) = dw(x), x€0d82,te]0,T],
3.3.3. Copper transport equation in solid phase vn(x, 1) -n(x) =dn(x), x€0382,te[0,T],
The change in the concentration of copper in the solid
phase follows the mass balar{&:

aSc(-, t A(pskgc
Ca(t ) + pskecaSc(-, 1) = %’

wheres; is the concentration of copper in solid phase, i.e., (@w(sw)v — G1lsw. p) — D(sw)Vsw)(x, 1) - n(x) = ds(1),

with r(x) outward normal t®s2. Forsy, by (19), the initial
and boundary conditions are given by:

(16) sw(x, t =0) = swo, x € £2,

Se = massofcopper_in solid pha_se ) 35w
mass of solid phase xe I—vl’t c [07 T], 37("’-’ t) =0,
n
3.4. Mathematical model xe€dQ/I,1el0,T]
The heap leaching of copper ore model is described by with n(x) outward normal tds2. For ca, by (20), the initial
Eqgs.(7)—(9)and(14)—(16) i.e., and boundary conditions are given by:
d . =C Q
(5w p)d—’l’ +divo = g(sw, p), a7 ~RN=co xe

(cavw — pswDVea)(x, 1) - n(x, 1) = ch(2),

— Msw)K(Vp — Ga(sw, p)) = v, (18) . dca

3 xel' tel0,T], a—(x,t):O,

¢— + div(gw(sw)v — G1(sw, p) — D(sw)Vsw) = 0, (19) . "
ot x e /I, 1 e0,T],

8(SwCa)

" + div(cavw — pswDVca) + dpswuca =0,  (20) with n(x) outward normal tdhs2. For cc, by (21) the initial

and boundary conditions are given by:

¢

ce(x,t=0)=0, xe,

b d(pskdcc) n ¢8(SWCC) + div(cevw — pswDVee)

o o (ccvw — dswDVeo)(x. 1) - nlx. 1) = ch2),
+ ¢spskecaSc = O, (21) ‘ 3%
xel' tel0, 1), 8—°(x, 7) =0,
3Sc d(kdce) _ "
T T ostecale =0 (e2) x €%/, 1€[0,T],
where the total pressurg the saturation of leach solution  with n(x) outward normal t@s2. For S, the initial condition
sw, the volumetric concentration of sulfuric aaig, the vol- is given by

umetric concentration of copper in leach solutigrand the

concentration of copper in solid phasg are the unknowns,  g.(x, 1 = 0) = S¢o, x € £2.
which are function of the physical pointe §2 and the time

t € [0, T]. Note that the unknowns,, cc and S¢ are not in

Egs.(17)—(19)because the effect of the transport of solutes 4 Numerical method

on the transport of fluid is weak. This hypothesis allows to

relax the level of coupling between the equations that form | this paper we will use the finite element approxima-

the system. tions, which combines the mixed finite element methods for
pressure and velocif#,5], and the finite volume method for
3.5. Initial and boundary conditions the saturation and the concentratigb8].

To complete the definition of our model, the initial and 4.1. Main features of the mathematical model
boundary conditions are indicated for each of the unknowns.

Ineffect, forp, by (6) and (10)is sufficient to specify aninitial Egs. (17) and (18)form a parabolic—elliptic equation.
fand boundary condition for the pressure of the gaseous phasein effect, if c(sw, p) = 0 the equation is elliptic (non-liquid
I.e., pn! phaseisincompressible, forexample, oil), andsf,, p) # 0

(v.1 = 0) = e (x.1) = the equation is parabolic (non-liquid phase is compressible,
P, I = %)= Pam, ’ plX, 1) = Patm, for example, gas). Eq19)is parabolic, but it can be degen-
x €082,t€[0,T], erate whenD(sy) = 0. The total mobilityx in (18) satisfies
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A > 0, while ko, > 0in (5). This is one reason because the
systemg7)—(9)is better tha(4)—(5)—(1)—(6) While the phase
mobilities A, can be zero, the total mobilityis always pos-

itive.
4.2. Discretization of the flow equations

The discretization of Eq$17)—(19)is done in two stages.
The first stage is related (@7) and (18)which generalizes
[4] tothe nonlinear case. The second stage is di®)vhere
we apply[10].

4.2.1. Discretization of systems (17) and (18)

Assume thatp and v, are functions of the space vari-
able x, have the usual degree of regularity of the vari-
ational solutlons of elliptic or parabolic problemg: e
{pel?2); L el¥2),i=12 andv e {v € L3(£) x
L2(); de c LZ(Q)}, where L3(2) ={f: 2 — %,
such that/, | f(x)|?dx < +oo}. Let 7 = {K : K be a tri-
angle, A ¢ 9K} a mesh defined on the domai@. The
(lowest order) Raviart—-Thomd#] space of vector func-
tions overK is a finite dimensional subspacdég of {v
(L?(K))?; divv € L?(K)}, having the following properties:
for all v € Xg : divv is constant oveK, foralli =1, 2, 3:

v - ng is constant over the edg#;, with nx outward uni-
tary normal toK and any vectow € Xk is perfectly deter-
mined by the knowledge of its flux; through the edged;,

i =1, 2, 3. Itisthen natural to use as basis functionsXqr
the vector fieldsw,, wo andws defined byjA w;-ng =4,

i, j=1,2,3. Hencew; is a vector field havmg a flux of
one through the edgd; and a zero flux through all the
remaining edges. For allx € X there are scalarsg 1,
VK2, VK,3 € R, such thavg = Vk,1W1 + Vg 2W2 + Vg 3W3.

By definition [, divw; = [, w;-ny =1 and [, dive =
Vk.1+ vk.2 + vk.3. The basic mixed idea consists in approx-
imating simultaneously the pressyrand the velocity fiela.

On each elemett we approximat@ andv by the approxima-
tion of the meaponkK,i.e., Px € %, by the approximation of
the meanoponA;,i=123,i.e,TPx; e N, i=123,
and by the approximation af onK, i.e.,vx € Xk. As we
have seenyk is perfectly known once its fluxes through the
three edges oK are know. Therefore, the approximatipn
andv on K is completely determined when one knows the
7 degrees of freedonPg € R, TPk; € R, i =1,2,3, and
vk € N, i =1, 2, 3. These numbers cannot be chosen com-
pletely arbitrary, i.e., additional conditions are necessary. In
effect, taking the scalar product ¢18) with a test func-
tion s € {v € (L2(2))% divv € L%(2)}, integrating overK
and using a Green'’s formula we obtain

/K()\(S)k)—lv-sz/KpdiVs—zs:/A.ps.nAj
=174

+ / G}»(ss p) - S,
K

(23)
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with 9K = A1 U A2 U A3. The sought consistency equation
for the approximate quantitiesg, Px (over K) and TPy
(overdK) will then be obtained by requiring that they satisfy
a relation similar tq23), namely

(A(sx)l)™t /K vk -Sx = Px /K divsg

3
- ZTPK,j/ SK *MA; +/ G.(sk, Pk) - sk,
=1 Aj K

forall sy € Xk. Taking as atest functiary successively the
three basis functionsy € Xg:

3
()»(SK)k)ileK,j/ w;-w; = PK/ div w;
i K K

3
- TPK,j/ wrnA,«-i-/ G;.(sk, Px) - w;,
— A, K
J=1 J
: - 3
fori = 1,2, 3. Becausd divw; = 1, > =1 TPk fAj w; -

ng =TPk;, i= 1,2 3, andAK,,-,j = fK w; - w;, i, j=1,
2, 3, we have equivalently faor= 1, 2, 3:

3
(A(s)) ™D vk jAk.ji = Pk — TPk,

j=1
+ / G (sk, Pk) - wi,
K
or in matrix notation:

Ag[vk] = di (S} PRDIV k — TPy + G} x(sk. PEH)].

(24)
where Ak = (Ak,j)3xs, [Vi] = (Vi Dax1, DIVg =
[1.1,1], TP} = (TP} Jax1, Gl ; & [ Gilsl. PR - wi,

&k = (G ;)3x1, anddy (s’) — Msk)k. Eq.(24)is called
consistency equation. In order to obtain the balance equation,
we multiply (17) by ¢ € L2(K) and integrating oveK:

d .
Ja=seat o+ [ @vie= [ g @)

The consistency equation has to be completed by another
equation expressing the fact th&k and vk satisfy (25)

in some approximate sense. As the chosen approximations
PK and vk satisfy: Px constant overK and divvg =

|K\ > Acak VK.A, constant ovek, it will be natural to re-
quire of Px andvk that they satisfy an equation analogous
to (25).

Py — Pt

K|(1— , Ppt
IK|( SK)Ca(SK ) Ar

+ 1Kl (ulq $

ACOK

YK

n n(.n n—1
UK,A>=‘PKFK(SK,PK ,
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after division byyp:

|K|(1— % Ycalsl, Py 1 Pk
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Pﬂ 1
At

+ Z vk a4 = FR(sk. PE).

ACOK

where Fg (s, P,”{l) ~ [, q(s, p). In matrix notation the

balance equation is given by

(%, Px~ 1)

-1
Py — Py

0.54

+ D|VK[UI}(] =

SATURATION AT 3 [h] s

WIDTH [m]

0.45

0.40

0.35

Fig. 2. Plot of saturation of leach solution at 3 h.

Kk PE),

(26)

with ¢ (s, Pt = |K|(1 — %)ca(ss, Pi~1). Now, we
need five additional conditions to close our system. First, we
consider, the continuity of pressures, i.e., for each édgech
thatA C KandA C K": TPy , = TPy, ,.Next, we consider
the continuity of normal components of velocities across inte-
rior edges, i.e., for each edgesuch thatd ¢ K andA c K':

Uk a + Vi 4 = 0. The 3rd condition is the Dirichlet condi-
tion of the total pressure on each boundary edge, i.e., for
all edgeA C 382, n = 0, N: TP} k.4 = Pp(x, ), x € A. The

4th condition is the boundary condition for the total velocity,
i.e., foralledged C 852,n =0, N: v , = vp(x, ), x € A.
Finally, the 5th condition is the initial condition for the to-
tal pressure, i.e., forak € 7, P(x,t = 0) = Po(x), x € K.
Depending on the choice of the principal unknowns and the

SATURATION ON INPUT BOUNDARY
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Fig. 3. Plot of saturation of leach solution vs. time on the irrigation boundary.
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SATURATION IN THE DOMAIN

20
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80 100 120 140

Time [s] (* 350)

Fig. 4. Plot of saturation of leach solution vs. time in the domain.

unknowns which will be eliminated, we obtain either the p; will de denoted byr';. Define for each verteg;, j € J,
mixedapproximation of(17) and (18)or its mixed-hybrid
approximation. Hence the mixed-hybrid formulation has to gravity of the surrounding triangles with the centres of gravity
be preferred to the mixed formulation especially for prob- of the edged”;. The resulting curve is the contour line of the
lems which have both elliptic and parabolic regions. Here dual volumes2;. The mesh of dual cell§2;/j € J} is a
we choose as principal unknowns for the solution of equa- partition of our domair2. The elements of which serve as
tions defined by the previous conditions the pressiies
for eachA C £, i.e., the mixed-hybrid approximation.

4.2.2. Discretization of (19)
For a finite index sefl C N, let T={Ty/k € I} be an
admissible triangulation of2. For a finite index sef C N,
{pj/j € J} denote the set of vertices of the triangulatifn
The shared edge joining two neighbouring vertiggsand
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SATURATION ON OUTPUT BOUNDARY

the corresponding dual cef?; by connecting the centres of

the finite volumes in our numerical method. LE{)) C J
indicate the indices of neighbouring cells of the dual €zl
Let us indicate values above the edggeby an upper indea
and values below’; by an upper indek and letA = {a, b}.
Thus, the joint edges aR; and $2; will be denoted byS?,

Sj?l. The unit outer normal vector t§, Sj?l with respect to
£2; will be denoted by:%, n” [10].
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Fig. 5. Plot of saturation of leach solution vs. time on the drainage boundary.
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CONCENTRATION OF ACID AT 48[h]

HEIGHT [m]

WIDTH [m]

Fig. 6. Plot of concentration of acid at 48 h.

In this sectiqn we define an implicit vertex-centred finite |g’,l~in(w’ v) — g']%i"(w', V)| < Lg|55fl|(|w — |+ Jv=1)),
volume approximation of19). In order to do so we first de- "
fine numerical fluxes for the convective and diffusive part 1
g';l’"(u, u) = (At” /S v(x, 1) - ndxdr | gw(u),
mn <
Jjl

of the problem. For anyj,l € I,a € A, andt" € %it, let
g € CY(%2, %) be a numerical convective flux, satisfying
the following conditions for alw, v, w’, v' € [A, B], where
A, B € % are chosen such thdt< ¢ < B:

(27)

where n; denotes the outer unit normal t; with re-
spect to$2;. The corresponding conditions should hold
: . ba . i ;
Furthermore, there exists a constant> 0 independent of ~ for g;;" : %% — 9% as well. This class of convective
j» I, n, andh, such that for alkw, v, w’, v'": fluxes are called monotone upwind fluxes in conservation
form. Examples are the Lax—Friedrichs or Enquist—-Osher

85" (w, v) = —g;}’n(v, w), fluxes.

awg‘;.l’"(w, v) > 0, avgjl’"(w, v) <0.

CONCENTRATION OF ACID ON INPUT BOUNDARY
50 T T T T T T

C.[Kg/m®]

Time [h]

Fig. 7. Plot of concentration of acid vs. time on the irrigation boundary.
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CONCENTRATION

OF ACID IN THE DOMAIN
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Fig. 8. Plot of concentration of acid vs. time in the domain.

Let V), be the space of piecewise linear functions®n
which are globally continuous. For anyl € I, * € PM and
" € X1 let the diffusive numerical fluxesj.‘l’” TV, — 0
be defined as "

5" (wn) = /S DV} - ny dxdr, (28)

Jl

for anyw} € Vj. Let some grid7 and an arbitrary partition
0—t0<t1 <" <Ml < <M =T, with step
sizeA" ="t1 — " n=0,1,....Foreach € {0, ..., N}
the approximate solutiasf, , € V, is given by the nodal ba-

sis coefﬁcients”w,j, Jj € 1, defined as:

n+l * n+l n+1 Sn+l G* n+l( n+l
|9 b 4 i S
1
"t (s"“)} = s (29)
where G’ o+l (%) is an approximation oG1(sw, p), and

Jlel. W|th this definition we further define the space-time
functionsy , by

sW,/’l(" 0) = Swo; SW,h('a t) = snwj'»hlv forallt e (t’ly tn+1]

CONCENTRATION OF ACID ON OUTPUT BOUNDARY

0.16 . . ,
0.14 |
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Fig. 9. Plot of concentration of acid vs. time on the drainage boundary.
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COPPER IN LEACH SOLUTION AT 100 [h]

HEIGTH [m]
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WIDTH [m]

Fig. 10. Plot of concentration of copper in liquid phase at 100 h.

4.3. Discretization of the sulfuric acid transport
equation d;fl’"(wh) = /s* ¢sw , DVw), - n% dxdr.
jl

The same method used {d9)is used fo(20). Therefore,
the approximate solutiorf, , is given by 4.4. Discretization of the copper transport equation in
liquid phase
¢ n+1 n+1 { * n+1 n—i—_l, n+l) * n+1( l)}
fw.j a |Q | Z (ca, Ca The same method used fd9)is used fo(21). Therefore,
the approximate solutioﬂ; h is given by:

n+1 n+1 no.n
+ uAt" osy,' jCaj = q&sw’Jca’], (30) (Gspska + ¢sn+1) n+1 Z{g* n+l ol n+1)
where IQ | C’]
el * n+1(cc-|};1)} + ps¢skeAtncgleg-;l
85", u) = - / v(x,7) -nfdedr | u and 0 oA
At 54 = (@spskd + dsy, ;)<C, j» (31)
CONCENTRATION OF COPPER ON INPUT BOUNDARY
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Fig. 11. Plot of concentration of copper in liquid phase vs. time on the irrigation boundary.
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CONCENTRATION OF COPPER IN THE DOMAIN
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Fig. 12. Plot of concentration of copper in liquid phase vs. time in the domain.

where
1 t"+1
85" (u, u) = A /a v(x, 1) - n;’]dxdt> u and
" i

45" (wy) = /S sy, DV, -y dedr
Jl

4.5. Discretization of the copper transport equation in
solid phase

To Eq.(22) we apply [, . (%):
ngl— Sej+ ¢ske/ (caSc)(x, 1) dr = kd¢5(cgj'l )
At"

(32)

where the integral term is approximate with numerical inte-
gration.

5. Computer algorithm

A computer program was written to simulate the flow of
liquid phase and the concentrations of acid and copper. This
program consists in the following subroutines:

1. To obtain the approximationgP; ™, Pk, vi'iy, vk,

and v’,'(fjg, for each pointx in the triangleK with edges

Al, A2 andA3.
2. The approximation®"* andv"t1(x, -) are replaced in
(29)to obtain the approximatiod}vfrjl.

C.[Kg/m?]

CONCENTRATION OF COPPER ON OUTPUT BOUNDARY

0 20 40 60

80 100 120 140
Time [h]

Fig. 13. Plot of concentration of copper in liquid phase vs. time on the drainage boundary.
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Fig. 14. Plot of concentration of copper in solid phase at 100 h.

3. The approximation®:"* andv"*1(x, -) are replaced in tion on the input boundary of the heap, extraction coefficient,

(12)to obtain the approximation;(x, ). adsorption coefficient and the consumption coefficient.
4. The approximations;,’* and vj;"1(x, -) are replaced in
(30) to obtain the approximatiorf;;".
5. The approximations;,"!, vi*(x,) and c;**, are re-
placed in(31)to obtain the approximatiocﬁf]fl. 6.1. Global parameters

6. Application to the heap leaching of a copper ore

Eq. (29) gives origin to a system of nonlinear equations ~ We will use the following nUTIGYigG“ values of the
which was solved using the inexact Newton metfijd For global parametersik = 6.23x 1071 m?, ¢=9.8m/s,

the convective fluxes we use the Lax—Friedrich {8k Our pw =9 x 1074 kgém S, Mn = 1-82 x 10°kg/ms,
subroutines allows to modify all relevant parameters, such @ = 1.704x 107°m, a1 = 0.637x 10" “m, ¢ = 0.459,
that, height and width of the heap, porosity, absolute perme- pw = 1011 kg/n?, pn = 1.165 kg/n?, Asc =1,

ability, residual saturation, ratio of irrigation, acid concentra- pd = 101,325Pa.

COPPER IN SOLID PHASE (INPUT)
25 T T T T T T

S [kg/m,] (*10°3)

80 100 120 140

Time [h]

Fig. 15. Plot of concentration of copper in solid phase vs. time on the irrigation boundary.
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COPPER IN SOLID PHASE (IN DOMAIN)
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Fig. 16. Plot of concentration of copper in solid phase vs. time in the domain.
6.2. Saturation of the leach solution 6.3. Concentration of sulfuric acid
Assume the residual saturation in the heap toshe= Assume the concentration of sulfuric acid in the irriga-
0.28322, the initial condition for the saturatiog(x, r = tion solution to be:C, = 6 kg/n?, for eachr > 0, and the

0) = 0.34858, and the rate of irrigatioR: = 1.6 x 10-°>m/s. first-order reaction constapt= 2 x 10~°s~1. Fig. 6shows
Fig. 2 shows the saturation of leaching solution in 2D. Ad- the concentration of acid in 2D. Additionally, we present
ditionally, we present results in three ploisg. 3shows the three plots:Fig. 7 shows the evolution of the acid con-
evolution of the saturatiosy, on the input boundary where centrationca on the input boundary™ where the irriga-
the irrigation process occursig. 4 showssy, in an arbitrary tion process occurd;ig. 8 showscy in an arbitrary point
point x € £2, andFig. 5 showssy, on the output boundary x € £2, andFig. 9 showscy on the output boundary where
where the drainage process occurs. The total time of simu-the drainage process occurs. The total time of simulation is
lationisT = 12 h, withAr = 350s. As you can see, thenu- T = 123h, with At = 1h. As you can see, the numerical

merical solution is in agreement with the physical expected solution is in agreement with the physical expected behav-
behavior. ior.

COPPER IN SOLID PHASE (OUTPUT)
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Fig. 17. Plot of concentration of copper in solid phase vs. time on the drainage boundary.
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6.4. Concentration of copper in leaching solution in leaching process literature, for examp8d, and allows
to simulate the leaching process under different conditions,
Assume the adsorption coefficient to lhg = 8.67 x for example, height and width of the heap, porosity, abso-
10°mi/kg and the extraction coefficienke = 8.3 x lute permeability, residual saturation, ratio of irrigation, acid

10" m3/kg s. Fig. 10shows the concentration of copper in  concentration on the input boundary of the heap, extraction
leaching solution in 2D. Additionally, we present three plots: coefficient, adsorption coefficient and the consumption coef-
Fig. 11 shows the evolution of the copper concentration in ficient.

the leach solutionc on the input boundary” where the irri-

gation process occurkjg. 12showscc in an arbitrary point

x € £2, andFig. 13showscc on the output boundary where  Acknowledgements

the drainage process occurs. The total time of simulation is
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