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a Department of Mathematical Engineering, University of Concepci´on, Casilla 160-C, Concepci´on, Chile
b Department of Mathematical and Physical Sciences, Universidad Cat´olica de Temuco, Casilla 15-D, Temuco, Chile

c Department of Metallurgical Engineering, University of Concepci´on, Casilla 53-C, Concepci´on, Chile

Abstract

The classical equations of two-phase flow in a porous media are solved together with two transport equations representing the leaching
process. For the two-phase flow we use the pressure-saturation formulation, where the principal variables are the total pressure, the total flux
and the saturation of the liquid phase. For the transport equations the variables of interest are the sulfuric acid and the copper concentration.
The numerical method combines a mixed finite element method with a finite volume method. The first one is used to approximate the total
pressure and flux, while the second is used to calculate the saturation and both concentrations. The advantage of this approach is its capacity
t g processes.
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o completely characterize the dynamics of the liquid and gaseous phase, and treat with the same model acid and bio-leachin
everal examples show the application of the method.
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. Introduction

Most companies, as a result of the favorable economics
ossible in heap leaching, consider heap leaching an alterna-

ive to conventional processing (flotation, agitation and vat
eaching)[12]. This process is considered an integral part of

ost copper mining operations and should determine, along
ith other factors, the cutoff grade of the material sent to the
ill.
Leaching is a transfer process of mass between the leach-

ng solution (fluid phase) and the ore bed (solid phase)[6].
he heap leaching process can be considered as a multiphase
ystem in a porous medium, where the multiphase system
s formed by two fluids phases: a liquid phase (leach solu-
ion) and a gaseous phase[3,11]. We consider the case where
he liquid phase transports two component: the sulfuric acid
leaching agent) and the copper as species of interest (cf.
6,9]).
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Two distinct phenomena are of interest in the stud
heap leaching: fluid flow and the physicochemical react
These two phenomena can be studied separately if the
of leaching of an element of solution that has participate
this process, and the extent of leaching that an eleme
the heap has undergone, does not influence the solution
pattern. In other words, the solution flow pattern in a h
depends only on the initial conditions of the heap. In gen
researchers in heap leaching have separated the fluid
problem from the physicochemical problem. We develo
mathematical model, which consists in a system of nonli
partial differential equations, in the context of multiphase
tem in a porous medium, that considers simultaneousl
fluid flow problem and the physicochemical problem.
model generalizes previous models which consider only
phase (see for instance[3,9]). For example, our model elim
inates the assumption that the gaseous phase pressu
the atmospheric pressure, i.e., we consider the intera
between both fluids phases.

Respect to the numerical solution, we present a gener
tion to the nonlinear case, which is very useful for enginee
applications[4].

Finally, we report numerical results that illustrates the
plication of our model to the heap leaching process.
385-8947/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
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Nomenclature

ca volumetric concentration of sulfuric acid in so-
lution (kg/m3)

cc volumetric concentration of copper in solution
(kg/m3)

cn compressibility of gaseous phase
D capillary diffusion coefficient
D tensor of hydrodynamic dispersion (m2/s)
g gravity (m/s2)
g gravity vector (=0,0,−g)
k absolute permeability of the porous system

(m2)
kd equilibrium distribution constant (adsorption

coefficient) (m3/kg)
ke first-order kinetic constant (extraction coeffi-

cient) (m3/kg s)
kr� relative permeability of the�-phase (–)
p global pressure (Pa)
pc capillary pressure function (Pa)
pd entry pressure (Pa)
p� pressure of�-phase (Pa)
q� fractional flow function (–)
� real numbers
swr residual water saturation (–)
s� saturation of�-phase (m3/m3)
Sc concentration (mass of copper/mass of solid

phase) of copper in solid phase (kg/kg)
t time (s)
T total time of simulation (s)
u� flow velocity (m/s)
v total velocity (m/s)
v� volumetric (flux or Darcy’s velocity) velocity

of �-phase (m/s)

Greek symbols and subscripts

� phase (� = w,n)
� = w liquid phase (leach solution)
� = n gaseous phase
λ total mobility (m s/kg)
λ� phase mobility function (m s/kg)
λBC Brooks–Corey parameter (–)
λLF Lax–Friedrichs parameter
µ first-order consumption factor (consumption

coefficient) (1/s)
µ� viscosity of the�-phase (kg/m s)
ρs solid bulk (dry) density (kg/m3)
ρ� density of�-phase (kg/m3)
φ porosity of ore bed (volume of void/volume of

bed) (m3/m3)
φs volume of solid phase/volume of bed (=1− φ)

(m3/m3)

2. Multiphase fluid flow

We consider a multiphase system in a porous medium.
Let a representative elementary volume (REV) (see[7]
for more details) in the porous medium formed by the
solid matrix and both fluids phases: liquid and gaseous.
The porosity of the porous medium is defined asφ =
volume of the pore space within the REV

volume of REV , and the saturation of phase
� is defined ass�(x, t) = volume of fluid� within the REV

volume of the pore space within the REV,
where� = w is the liquid phase and� = n is the gaseous
phase. We impose the customary property that the fluids fill
the volume:

sw + sn = 1. (1)

2.1. Compositional flow/transport equations

A mass balance must be specified for each component.
The mass balance equations for the transport of component
κ in �-phase can be written as[2,7]:

∂(φs�c
�
κ )

∂t
+ div(c�

κ v� − φs�D∇c�
κ ) + Φ� = 0, (2)
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here c�
κ is the volumetric concentration defined

�
κ = mass of componentκ in phase�

volume of phase� , v� the volumetric flux o

hase �, Φ� (kg/m3 s) the irreversible rate of solu
emoved (or added) from (to) the liquid solution,D
he dispersity-diffusion tensor given byDij = αT|u�|δij +
αL − αT)uiuj

|u�| + Dmδij, whereαL andαT are the longitudi
al and transverse dispersivities, respectively,δij = 1 if i = j

ndδij = 0 if i �= j, andDm is the molecular diffusion coe
cient (in this paper we setDm = 0) andu� = φs�v� is the
ow velocity of phase�.

In the case of sorption,(2) is modified to include a retard
ion factor. It is assumed that there is a Freundlich equilib
sotherm between the liquid phase and the solid phase
sotherm has the form

�
κ = mass of component in solid phase

mass solid phase
= kdc

�
κ ,

herekd is called the distribution coefficient. Using the
umption that sorption only occurs from the liquid to the s
hase, the equation for the liquid phase can be modifi

nclude adsorption:

∂(φsρsF
�
κ )

∂t
+ ∂(φs�c

�
κ )

∂t
+ div(c�

κ v� − φs�D∇cw
κ )

+Φ� = 0, (3)

hereφs = 1 − φ, ρs is ore bulk density.
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Fig. 1. Plot of the mathematical domainΩ.

3. Model development

3.1. Mathematical domain and assumptions

In this paper we consider 2D geometry (Fig. 1, transver-
sal cut of the heap). The boundary ofΩ ⊂ �2, i.e., ∂Ω is
expressed as∂Ω = Γ i ∪ Γ o ∪ Γ l ∪ Γ r, whereΓ i is the in-
put boundary (zone of irrigation),Γ o is the output boundary
(zone of drainage),Γ l is the left boundary,Γ r is the right
boundary.

In this article we consider a heap of leaching of width
W = 25 m and heightH = 5 m.

In order to simplify our model, we consider a two phase
flow through a porous medium with the following assump-
tions (see[9] for specific details): flow occurs in a vertical
plane 2D, generalized Darcy’s law for multiphase flow is
valid, the porosity and the absolute permeability are uniform
in space and constant with time, the porous medium is non-
compressible, homogeneous and isotropic with respect to the
transversal and longitudinal dispersivity coefficients, in the
void space there are only two fluids phases: the liquid phase
(leach solution) and the gaseous phase, the reaction between
the acid and the particles of copper minerals proceeds in an in-
stantaneous fashion and is irreversible, the system is isother-
mal, the regime of flow is laminar, the physical properties
of liquid phase are constants, the effect of the transport of
s ass
e

3

a

∂(φρ�s�)

∂t
+ div(ρ�v�) = r�, (4)

whereφ is the porosity of the porous medium,ρ�, s�, v�,
are the density, saturation, pressure, volumetric velocity of
the�-phase, andr� is the source term (by assumption:r� =
0, � = w,n). As in the single-phase case, it can be shown
by volume averaging or homogenization techniques that the
macroscopic phase velocity can be expressed in terms of the
macroscopic phase pressure by the generalized Darcy’s law
[7]

v� = −kkr�

µ�
(∇p� − ρ�g), (5)

wherek is the absolute permeability of the porous systems,
p�,µ�, kr� are the pressure, viscosity and the relative perme-
ability of the�-phase, andg is the gravitational, downward-
pointing, constant vector. Therefore,(4) and (5)are the two-
phase flow equations (see[1,2,5]).

The pressure at the microscopic level has a jump discon-
tinuity when passing from one fluid phase to the other. The
jump is called thecapillary pressure. This fact is reflected
by a macroscopic capillary pressure at the macroscopic
level: pc(x, t) = pn(x, t) − pw(x, t). The macroscopic con-
sideration of the capillarity results in the following cap-
i
s

p

T are
t me-
olutes on the transport of fluid is weak, and not exist m
xchange between both fluids phases.

.2. Two-phase flow equations

Thus, the continuity equations[7] for each phase� = w,n
re derived from the mass balance in the REV:
llary pressure-saturation relation:pc(x, t) = f (sw, sn), but
w + sn = 1, thereforepc is given by:

c(sw) = pn − pw. (6)

he usual correlations for a two-phase gas-liquid system
he Brooks–Corey (BC) and Van Genuchten (VG) para
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terizations[7]. In this work we use BC, which is defined by

pc(sw) = pd

(
sw − swr

1 − swr

)−1/λBC

, pc ≥ pd,

where 0.2 ≤ λBC ≤ 3.0 is a BC-parameter (a very smallλBC-
parameter describes a single grain size material, while a
very large value indicates a highly non-uniform material)
andpd is the entry pressure (capillary pressure required to
displace the wetting phase from the occurring pore). In this
paperλBC = 1, andpd = 101,325 Pa, i.e., the atmospheric
pressure.

In conjunction with constrains(1) and(6), Eqs.(4) and
(5), represent a coupled dynamic system of differential equa-
tions, which describes the simultaneous flow of two or more
immiscible fluids in a variable saturation porous medium.
The behavior of the system of equations is strongly nonlin-
ear because there is a nonlinear dependence of the saturation
on the capillary pressures and on the relative permeabilities.

Alternative formulations for system(4)–(5)–(6)–(1)have
been developed which depend on the individual problem and
on the efficiency of the chosen numerical methods[7]:

• (P–P) pressure formulation: with phase pressures as un-
knowns (primary variables).

• (P–S) pressure–saturation formulation: with the pressure
s of
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G1(sw, p) = kλnqw(ρn − ρw)g, and D(sw) = −kλnqw
dpc
ds

is the capillary diffusion coefficient. Finally,v is the total
velocity, given by

v = vw + vn, (11)

where the volumetric velocity of leaching solution is given
by

vw = qwv + kλnqw∇pc − kλnqw(ρn − ρw)g, (12)

and the volumetric velocity of gaseous phase is given by

vn = qnv + kλwqn∇pc − kλwqn(ρn − ρw)g. (13)

3.3. Transport equations

The sulfuric acid and the copper ions are transported by the
leach solution. The presented equations conform the classical
transport equations in the context of biphasic/bicomponent
flow [1,7] and this formulation generalizes the saturated flow
in a porous medium[9] to a biphasic flow.

In Eq. (2) we consider� = w, κ = a for the sulfuric acid
andκ = c for the copper. About the notation for the volumet-
ric concentration:cw

a ≡ ca andcw
c ≡ cc, i.e., we omit w.
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of the fluid with the highest affinity and the saturation
the other phases as unknowns.
(S–S) saturation formulation: with phase saturations
unknowns.

In petroleum reservoir simulation the governing equat
hat describe fluid flow are usually written in a fractio
ow formulation, i.e., in term of a saturation and a glo
ressure. The main reason for this fractional flow appr

s that efficient numerical methods can be devised to
dvantage of many physical properties inherent in the
quations. Therefore, the systems(4)–(5)–(6)–(1), can also
e written in our case as[5]:

(sw, p)
dp

dt
+ div v = q(sw, p), (7)

− λ(sw)k(∇p − Gλ(sw, p)) = v, (8)

∂sw

∂t
+ div(qw(sw)v − G1(sw, p) − D(sw)∇sw) = 0, (9)

ith unknowns:p, v, sw, where:λ = λw + λn is the tota
obility with: λ� = kr�

µ�
is the mobility of�-phase,p is the

otal pressure given by

= pn −
∫ s

0
qw

dpc

dξ
dξ, (10)

ith q� = λ�
λ

, � = w,n is the fractional flow func

ion, c(sw, p) = (1 − sw)cn(p) with: cn(p) = 1
ρn

dρn
dpn

s the compressibility of the gaseous pha
(sw, p) = −sncn(p)qw(dpc/dt), Gλ(sw, p) = λwρw+λaρn

λ
g,
.3.1. Sulfuric acid transport equation
During migration through the porous media (heap) su

ic acid reacts with the copper. Acid consumption is assu
o be proportional to its concentration (µca in (14)), there-
ore, from(2) with Φ� = φswµca, the transport equation
ulfuric acid in leach solution is given by

∂(φswca)

∂t
+ div(cavw − φswD∇ca) + φswµca = 0, (14)

hereµ is a first-order reaction constant (consumption
or) andca the volumetric concentration of acid in leach
ution.

.3.2. Copper transport equation in liquid phase
The transport of copper ions through the heap is ma

overned by two processes. The first process consists
hemical reaction that occurs between the leaching agen
he mineral particles. The copper present in the ore is so
ized passing from the solid to the liquid phase. The kin
nvolved is a the first order (ρskecaSc in (15)) heterogeneou
eaction. Therefore, the first process is extraction of co
rom the solid phase to the liquid phase. The second pro
n the copper adsorption/desorption phenomenon, whi

odeled using a linear equilibrium isotherm (Fw
c = kdcc in

15)). Therefore, from(3) with Φ� = φsρskecaSc, the trans
ort equation of copper in leach solution is given by

∂(φsρskdcc)

∂t
+ ∂(φswcc)

∂t
+ div(ccvw − φswD∇cc)

+φsρskecaSc = 0, (15)
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whereke is a first-order kinetic constant,Sc the concentration
of copper associated with the solid phase (cf.(16)) andcc the
volumetric concentration of copper in leach solution.

3.3.3. Copper transport equation in solid phase
The change in the concentration of copper in the solid

phase follows the mass balance[9]:

∂Sc(·, t)
∂t

+ φskecaSc(·, t) = ∂(φskdcc)

∂t
, (16)

whereSc is the concentration of copper in solid phase, i.e.,
Sc = mass of copper in solid phase

mass of solid phase .

3.4. Mathematical model

The heap leaching of copper ore model is described by
Eqs.(7)–(9)and(14)–(16), i.e.,

c(sw, p)
dp

dt
+ div v = q(sw, p), (17)

− λ(sw)K(∇p − Gλ(sw, p)) = v, (18)

φ
∂sw

∂t
+ div(qw(sw)v − G1(sw, p) − D(sw)∇sw) = 0, (19)

φ
∂(swca) + div(c v − φs D∇c ) + φs µc = 0, (20)

φ

w on
s

u
c s,
w
t

E tes
o s to
r orm
t

3

nd
b wns.
I l
a hase
i

p

with patm atmospheric pressure. Forv, by (11), is sufficient
to specify boundary conditions forvw andvn:

vw(x, t) · n(x) = dw(x), x ∈ ∂Ω, t ∈ [0, T ],

vn(x, t) · n(x) = dn(x), x ∈ ∂Ω, t ∈ [0, T ],

with n(x) outward normal to∂Ω. For sw, by (19), the initial
and boundary conditions are given by:

sw(x, t = 0) = swo, x ∈ Ω̄,

(qw(sw)v − G1(sw, p) − D(sw)∇sw)(x, t) · n(x) = ds(t),

x ∈ Γ i, t ∈ [0, T ],
∂sw

∂n
(x, t) = 0,

x ∈ ∂Ω/Γ i, t ∈ [0, T ],

with n(x) outward normal to∂Ω. For ca, by (20), the initial
and boundary conditions are given by:

ca(x, t) = cao, x ∈ Ω̄,

(cavw − φswD∇ca)(x, t) · n(x, t) = ci
a(t),

x ∈ Γ i, t ∈ [0, T ],
∂ca

∂n
(x, t) = 0,

x ∈ ∂Ω/Γ i, t ∈ [0, T ],

w
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w
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∂t
a w w a w a

s
∂(ρskdcc)

∂t
+ φ

∂(swcc)

∂t
+ div(ccvw − φswD∇cc)

+φsρskecaSc = 0, (21)

∂Sc

∂t
+ φskecaSc = φs

∂(kdcc)

∂t
, (22)

here the total pressurep, the saturation of leach soluti
w, the volumetric concentration of sulfuric acidca, the vol-
metric concentration of copper in leach solutioncc and the
oncentration of copper in solid phaseSc, are the unknown
hich are function of the physical pointx ∈ Ω̄ and the time
∈ [0, T ]. Note that the unknownsca, cc andSc are not in
qs.(17)–(19)because the effect of the transport of solu
n the transport of fluid is weak. This hypothesis allow
elax the level of coupling between the equations that f
he system.

.5. Initial and boundary conditions

To complete the definition of our model, the initial a
oundary conditions are indicated for each of the unkno

n effect, forp, by(6) and (10), is sufficient to specify an initia
nd boundary condition for the pressure of the gaseous p

.e.,pn:

n(x, t = 0) = patm, x ∈ Ω̄, pn(x, t) = patm,

x ∈ ∂Ω, t ∈ [0, T ],
,

ith n(x) outward normal to∂Ω. For cc, by (21) the initial
nd boundary conditions are given by:

c(x, t = 0) = 0, x ∈ Ω̄,

(ccvw − φswD∇cc)(x, t) · n(x, t) = ci
c(t),

x ∈ Γ i, t ∈ [0, T ],
∂cc

∂n
(x, t) = 0,

x ∈ ∂Ω/Γ i, t ∈ [0, T ],

ith n(x) outward normal to∂Ω. ForSc, the initial condition
s given by

c(x, t = 0) = Sco, x ∈ Ω̄.

. Numerical method

In this paper we will use the finite element approxim
ions, which combines the mixed finite element method
ressure and velocity[4,5], and the finite volume method f

he saturation and the concentrations[10].

.1. Main features of the mathematical model

Eqs. (17) and (18)form a parabolic–elliptic equatio
n effect, if c(sw, p) = 0 the equation is elliptic (non-liqu
hase is incompressible, for example, oil), and ifc(sw, p) �= 0

he equation is parabolic (non-liquid phase is compress
or example, gas). Eq.(19) is parabolic, but it can be dege
rate whenD(sw) = 0. The total mobilityλ in (18) satisfies
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λ > 0, while kr� ≥ 0 in (5). This is one reason because the
systems(7)–(9)is better that(4)–(5)–(1)–(6). While the phase
mobilitiesλ� can be zero, the total mobilityλ is always pos-
itive.

4.2. Discretization of the flow equations

The discretization of Eqs.(17)–(19)is done in two stages.
The first stage is related to(17) and (18), which generalizes
[4] to the nonlinear case. The second stage is about(19)where
we apply[10].

4.2.1. Discretization of systems (17) and (18)
Assume thatp and v, are functions of the space vari-

able x, have the usual degree of regularity of the vari-
ational solutions of elliptic or parabolic problems:p ∈
{p ∈ L2(Ω); ∂p

∂xi
∈ L2(Ω), i = 1,2} and v ∈ {v ∈ L2(Ω) ×

L2(Ω); div v ∈ L2(Ω)}, where L2(Ω) = {f : Ω −→ �,
such that

∫
Ω

|f (x)|2 dx < +∞}. Let Th = {K : K be a tri-
angle, A ⊂ ∂K} a mesh defined on the domainΩ. The
(lowest order) Raviart–Thomas[4] space of vector func-
tions overK is a finite dimensional subspaceXK of {v ∈
(L2(K))2; div v ∈ L2(K)}, having the following properties:
for all v ∈ XK : div v is constant overK, for all i = 1,2,3:
v · nK is constant over the edgeAi, with nK outward uni-
t -
m
i

t
i f
o e
r
v

B
v ox-
i
O -
t f
t
a
h the
t n
a the
7
v om-
p y. In
e -
t
a

with ∂K = A1 ∪ A2 ∪ A3. The sought consistency equation
for the approximate quantitiesvK, PK (over K) and TPK

(over∂K) will then be obtained by requiring that they satisfy
a relation similar to(23), namely

(λ(sK)k)−1
∫
K

vK · sK = PK

∫
K

div sK

−
3∑

j=1

TPK,j

∫
Aj

sK · nAj +
∫
K

Gλ(sK, PK) · sK,

for all sK ∈ XK. Taking as a test functionsK successively the
three basis functionswK ∈ XK:

(λ(sK)k)−1
3∑

j=1

vK,j

∫
K

wj · wi = PK

∫
K

div wi

−
3∑

j=1

TPK,j

∫
Aj

wi · nAj +
∫
K

Gλ(sK, PK) · wi,

for i = 1,2,3. Because
∫
K

div wi = 1,
∑3

j=1 TPK,j

∫
Aj

wi ·
nK = TPK,i, i = 1,2,3, andAK,i,j = ∫

K
wj · wi, i, j = 1,

2, 3, we have equivalently fori = 1, 2, 3:

(λ(sK)k)−1
3∑

vK,jAK,j,i = PK − TPK,i

o

A

w

[
G

c ation,
w

T other
e
i tions
P

-
q ous
t

|

ary normal toK and any vectorv ∈ XK is perfectly deter
ined by the knowledge of its fluxvi through the edgesAi,
= 1,2,3. It is then natural to use as basis functions forXK

he vector fieldsw1, w2 andw3 defined by
∫
Ai

wj · nK = δij,
, j = 1,2,3. Hencewj is a vector field having a flux o
ne through the edgeAj and a zero flux through all th
emaining edges. For allvK ∈ XK there are scalarsvK,1,
K,2, vK,3 ∈ �, such thatvK = vK,1w1 + vK,2w2 + vK,3w3.
y definition

∫
K

div wj = ∫
∂K

wj · nk = 1 and
∫
K

div v =
K,1 + vK,2 + vK,3. The basic mixed idea consists in appr
mating simultaneously the pressurepand the velocity fieldv.

n each elementKwe approximatepandv by the approxima
ion of the meanponK, i.e.,PK ∈ �, by the approximation o
he mean ofp onAi, i = 1,2,3, i.e.,TPK,i ∈ �, i = 1,2,3,
nd by the approximation ofv on K, i.e., vK ∈ XK. As we
ave seen,vK is perfectly known once its fluxes through

hree edges ofK are know. Therefore, the approximatiop
ndv on K is completely determined when one knows
degrees of freedom:PK ∈ �, TPK,i ∈ �, i = 1,2,3, and

K,i ∈ �, i = 1,2,3. These numbers cannot be chosen c
letely arbitrary, i.e., additional conditions are necessar
ffect, taking the scalar product of(18) with a test func

ion s ∈ {v ∈ (L2(Ω))2; div v ∈ L2(Ω)}, integrating overK
nd using a Green’s formula we obtain

∫
K

(λ(s)k)−1v · s =
∫
K

pdiv s −
3∑

j=1

∫
Aj

ps · nAj

+
∫
K

Gλ(s, p) · s, (23)
j=1

+
∫
K

Gλ(sK, PK) · wi,

r in matrix notation:

K[vnK] = anK(snK)[Pn
KDIVT

K − TPn
K + Gn

λ,K(snK, Pn−1
K )],

(24)

here AK = (AK,i,j)3×3, [vnK] = (νn−1
K,i )3×1, DIVK =

1,1,1], TPn
K = (TPn

K,i)3×1, Gn
K,i ≈ ∫

K
Gλ(snK, Pn−1

K ) · wi,
n
λ,K = (Gn

K,i)3×1, andanK(snK) = λ(snK)k. Eq.(24) is called
onsistency equation. In order to obtain the balance equ
e multiply (17)by ϕ ∈ L2(K) and integrating overK:∫
K

(1 − s)ca(s, p)
dp

dt
ϕ +

∫
K

(div v)ϕ =
∫
K

q(s, p)ϕ. (25)

he consistency equation has to be completed by an
quation expressing the fact thatPK and vK satisfy (25)

n some approximate sense. As the chosen approxima
K and vK satisfy: PK constant overK and divvK =
1

|K|
∑

A⊂∂K vK,A, constant overK, it will be natural to re
uire ofPK andvK that they satisfy an equation analog

o (25):

K|(1 − snK)ca(snK, Pn−1
K )

Pn
K − Pn−1

K

1t
ϕK

+ |K|ϕK

(
1

|K|
∑

A⊂∂K

vnK,A

)
= ϕKFn

K(snK, Pn−1
K ),
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Fig. 2. Plot of saturation of leach solution at 3 h.

after division byϕK:

|K|(1 − sn−1
K )ca(snK, Pn−1

K )
Pn
K − Pn−1

K

1t

+
∑

A⊂∂K

vnK,A = Fn
K(snK, Pn−1

K ),

where FK(snK, Pn−1
K ) ≈ ∫

K
q(s, p). In matrix notation the

balance equation is given by

cnK(snK, Pn−1
K )

Pn
K − Pn−1

K

1t
+ DIVK[vnK] = Fn

K(snK, Pn−1
K ),

(26)

with cnK(snK, Pn−1
K ) = |K|(1 − snK)ca(snK, Pn−1

K ). Now, we
need five additional conditions to close our system. First, we
consider, the continuity of pressures, i.e., for each edgeAsuch
thatA ⊂ K andA ⊂ K′:TPn

K,A = TPn
K′,A. Next, we consider

the continuity of normal components of velocities across inte-
rior edges, i.e., for each edgeAsuch thatA ⊂ K andA ⊂ K′:
vnK,A + vnK′,A = 0. The 3rd condition is the Dirichlet condi-
tion of the total pressure on each boundary edge, i.e., for
all edgeA ⊂ ∂Ω, n = 0, N:TPn

K,A = PD(x, tn), x ∈ A. The
4th condition is the boundary condition for the total velocity,
i.e., for all edgeA ⊂ ∂Ω,n = 0, N: vnK,A = vD(x, tn), x ∈ A.
Finally, the 5th condition is the initial condition for the to-
tal pressure, i.e., for allK ∈ Th,P(x, t = 0) = P0(x), x ∈ K.
Depending on the choice of the principal unknowns and the

solutio
Fig. 3. Plot of saturation of leach
 n vs. time on the irrigation boundary.
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Fig. 4. Plot of saturation of leach solution vs. time in the domain.

unknowns which will be eliminated, we obtain either the
mixedapproximation of(17) and (18)or its mixed-hybrid
approximation. Hence the mixed-hybrid formulation has to
be preferred to the mixed formulation especially for prob-
lems which have both elliptic and parabolic regions. Here
we choose as principal unknowns for the solution of equa-
tions defined by the previous conditions the pressuresTPA,
for eachA ⊂ Ω̄, i.e., the mixed-hybrid approximation.

4.2.2. Discretization of (19)
For a finite index setI ⊂ N, let T = {Tk/k ∈ I} be an

admissible triangulation ofΩ. For a finite index setJ ⊂ N,
{pj/j ∈ J} denote the set of vertices of the triangulationT.
The shared edge joining two neighbouring verticespj and

pl will de denoted byΓjl. Define for each vertexpj, j ∈ J ,
the corresponding dual cellΩj by connecting the centres of
gravity of the surrounding triangles with the centres of gravity
of the edgesΓjl. The resulting curve is the contour line of the
dual volumeΩj. The mesh of dual cells{Ωj/j ∈ J} is a
partition of our domainΩ. The elements of which serve as
the finite volumes in our numerical method. LetN(j) ⊂ J

indicate the indices of neighbouring cells of the dual cellΩj.
Let us indicate values above the edgeΓjl by an upper indexa
and values belowΓjl by an upper indexband letA = {a, b}.
Thus, the joint edges ofΩj andΩl will be denoted bySa

jl,

Sb
jl. The unit outer normal vector toSa

jl, S
b
jl with respect to

Ωj will be denoted byna
jl, nb

jl [10].

solutio
Fig. 5. Plot of saturation of leach
 n vs. time on the drainage boundary.
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Fig. 6. Plot of concentration of acid at 48 h.

In this section we define an implicit vertex-centred finite
volume approximation of(19). In order to do so we first de-
fine numerical fluxes for the convective and diffusive part
of the problem. For anyj, l ∈ I, a ∈ A, and tn ∈ �+, let
g
a,n
lj ∈ C1(�2,�) be a numerical convective flux, satisfying

the following conditions for allw, v,w′, v′ ∈ [A,B], where
A, B ∈ � are chosen such thatA ≤ c ≤ B:

∂wg
a,n
jl (w, v) ≥ 0, ∂vg

a,n
jl (w, v) ≤ 0.

Furthermore, there exists a constantLg > 0 independent of
j, l, n, andh, such that for allw, v, w′, v′:

g
a,n
jl (w, v) = −g

b,n
lj (v,w),

|ga,n
jl (w, v) − g

a,n
jl (w′, v′)| ≤ Lg|Sa

jl|(|w − w′| + |v−v′|),

g
a,n
jl (u, u) =

(
1

1tn

∫ tn+1

tn

∫
Sa
jl

v(x, t) · na
jl dx dt

)
qw(u),

(27)

where na
jl denotes the outer unit normal toSa

jl with re-
spect toΩj. The corresponding conditions should hold

for g
b,n
jl : �2 −→ � as well. This class of convective

fluxes are called monotone upwind fluxes in conservation
form. Examples are the Lax–Friedrichs or Enquist–Osher
fluxes.

f acid v
Fig. 7. Plot of concentration o
 s. time on the irrigation boundary.
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Fig. 8. Plot of concentration of acid vs. time in the domain.

Let Vh be the space of piecewise linear functions onT
which are globally continuous. For anyj, l ∈ I, ∗ ∈ PM and
tn ∈ �+ let the diffusive numerical fluxesd∗,n

jl : Vh −→ �
be defined as

d
∗,n
jl (wh) =

∫
S∗
jl

D∇wn
h · n∗

jl dx dt, (28)

for anywn
h ∈ Vh. Let some gridT and an arbitrary partition

0 = t0 < t1 < · · · < tn < tn+1 < · · · < tm = T , with step
size1tn = tn+1 − tn,n = 0,1, . . .. For eachn ∈ {0, . . . , N}
the approximate solutionsnw,h ∈ Vh is given by the nodal ba-

sis coefficientssnw,j, j ∈ I, defined as:

sn+1
w,j + 1tn

|Ωj|φ
∑
l,∗

{g∗,n+1
jl (sn+1

w,j , sn+1
w,l ) − G

∗,n+1
1 (sn+1

w,h )

− d
∗,n+1
jl (sn+1

w,h )} = snw,j, (29)

whereG
∗,n+1
1 (%) is an approximation ofG1(sw, p), and

j, l ∈ I. With this definition we further define the space-time
functionsw,h by

sw,h(·,0) = swo, sw,h(·, t) = sn+1
w,h , for all t ∈ (tn, tn+1].

f acid v
Fig. 9. Plot of concentration o
 s. time on the drainage boundary.
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Fig. 10. Plot of concentration of copper in liquid phase at 100 h.

4.3. Discretization of the sulfuric acid transport
equation

The same method used for(19)is used for(20). Therefore,
the approximate solutioncna,h is given by

φsn+1
w,j cn+1

a,j + 1tn

|Ωj|
∑
l,∗

{g∗,n+1
jl (cn+1

a,j , cn+1
a,l ) − d

∗,n+1
jl (cn+1

a,h )}

+µ1tnφsn+1
w,j cn+1

a,j = φsnw,jc
n
a,j, (30)

where

g
a,n
jl (u, u) =

(
1

1tn

∫ tn+1

tn

∫
Sa
jl

v(x, t) · na
jl dx dt

)
u and

d
∗,n
jl (wh) =

∫
S∗
jl

φsnw,hD∇wn
h · n∗

jl dx dt.

4.4. Discretization of the copper transport equation in
liquid phase

The same method used for(19)is used for(21). Therefore,
the approximate solutioncnc,h is given by:

(φsρskd + φsn+1
w,j )cn+1

c,j + 1tn

|Ωj|
∑
l,∗

{g∗,n+1
jl (cn+1

c,j , cn+1
c,l )

− d
∗,n+1
jl (cn+1

c,h )} + ρsφske1tncn+1
a,j Sn+1

c,j

= (φsρskd + φsnw,j)c
n
c,j, (31)

r in liqu
Fig. 11. Plot of concentration of coppe
 id phase vs. time on the irrigation boundary.
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Fig. 12. Plot of concentration of copper in liquid phase vs. time in the domain.

where

g
a,n
jl (u, u) =

(
1

1tn

∫ tn+1

tn

∫
Sa
jl

v(x, t) · na
jl dx dt

)
u and

d
∗,n
jl (wh) =

∫
S∗
jl

φsnw,hD∇wn
h · n∗

jl dx dt.

4.5. Discretization of the copper transport equation in
solid phase

To Eq.(22)we apply
∫
1tn

(%):

Sn+1
c,j − Sn

c,j + φske

∫
1tn

(caSc)(x, t) dt = kdφs(c
n+1
c,j − cnc,j),

(32)

where the integral term is approximate with numerical inte-
gration.

5. Computer algorithm

A computer program was written to simulate the flow of
liquid phase and the concentrations of acid and copper. This
program consists in the following subroutines:

1. To obtain the approximations:TPn+1
A , PK, vn+1

K,A1, vn+1
K,A2

andvn+1
K,A3, for each pointx in the triangleK with edges

A1,A2 andA3.
2. The approximationsPn+1

K andvn+1(x, ·) are replaced in
(29) to obtain the approximationsn+1

w,j .

r in liqu
Fig. 13. Plot of concentration of coppe
 id phase vs. time on the drainage boundary.
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Fig. 14. Plot of concentration of copper in solid phase at 100 h.

3. The approximationsPn+1
K andvn+1(x, ·) are replaced in

(12) to obtain the approximationvn+1
w (x, ·).

4. The approximationssn+1
w,j andvn+1

w (x, ·) are replaced in

(30) to obtain the approximationcn+1
a,j .

5. The approximationssn+1
w,j , vn+1

w (x, ·) and cn+1
a,j , are re-

placed in(31) to obtain the approximationcn+1
c,j .

Eq. (29) gives origin to a system of nonlinear equations
which was solved using the inexact Newton method[1]. For
the convective fluxes we use the Lax–Friedrich flux[8]. Our
subroutines allows to modify all relevant parameters, such
that, height and width of the heap, porosity, absolute perme-
ability, residual saturation, ratio of irrigation, acid concentra-

tion on the input boundary of the heap, extraction coefficient,
adsorption coefficient and the consumption coefficient.

6. Application to the heap leaching of a copper ore

6.1. Global parameters

We will use the following numerical values of the
global parameters:k = 6.23× 10−11 m2, g = 9.8 m/s2,
µw = 9 × 10−4 kg/m s, µn = 1.85× 10−5 kg/m s,
αL = 1.704× 10−2 m, αT = 0.637× 10−2 m, φ = 0.459,
ρw = 1011 kg/m3, ρn = 1.165 kg/m3, λBC = 1,
pd = 101,325 Pa.

r in sol
Fig. 15. Plot of concentration of coppe
 id phase vs. time on the irrigation boundary.
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Fig. 16. Plot of concentration of copper in solid phase vs. time in the domain.

6.2. Saturation of the leach solution

Assume the residual saturation in the heap to be:swr =
0.28322, the initial condition for the saturationsw(x, t =
0) = 0.34858, and the rate of irrigation:R = 1.6 × 10−5 m/s.
Fig. 2 shows the saturation of leaching solution in 2D. Ad-
ditionally, we present results in three plots:Fig. 3shows the
evolution of the saturationsw on the input boundaryΓ i where
the irrigation process occurs,Fig. 4showssw in an arbitrary
point x ∈ Ω, andFig. 5 showssw on the output boundary
where the drainage process occurs. The total time of simu-
lation isT = 12 h, with1t = 350 s. As you can see, the nu-
merical solution is in agreement with the physical expected
behavior.

6.3. Concentration of sulfuric acid

Assume the concentration of sulfuric acid in the irriga-
tion solution to be:Ci

a = 6 kg/m3, for eacht ≥ 0, and the
first-order reaction constantµ = 2 × 10−5 s−1. Fig. 6shows
the concentration of acid in 2D. Additionally, we present
three plots:Fig. 7 shows the evolution of the acid con-
centrationca on the input boundaryΓ i where the irriga-
tion process occurs,Fig. 8 showsca in an arbitrary point
x ∈ Ω, andFig. 9 showsca on the output boundary where
the drainage process occurs. The total time of simulation is
T = 123 h, with1t = 1 h. As you can see, the numerical
solution is in agreement with the physical expected behav-
ior.

r in so
Fig. 17. Plot of concentration of coppe
 lid phase vs. time on the drainage boundary.
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6.4. Concentration of copper in leaching solution

Assume the adsorption coefficient to bekd = 8.67×
10−5 m3/kg and the extraction coefficientke = 8.3 ×
10−7 m3/kg s.Fig. 10shows the concentration of copper in
leaching solution in 2D. Additionally, we present three plots:
Fig. 11shows the evolution of the copper concentration in
the leach solutioncc on the input boundaryΓ i where the irri-
gation process occurs,Fig. 12showscc in an arbitrary point
x ∈ Ω, andFig. 13showscc on the output boundary where
the drainage process occurs. The total time of simulation is
T = 123 h, with1t = 1 h. As you can see, the numerical
solution is in agreement with the physical expected behav-
ior.

6.5. Concentration of copper in solid phase

The initial condition isSc(x, t = 0) = λSGS , whereλS is
the leachable fraction of the total copper contained in the
heap, andGS is the grade of the ore. In our simulationsλS =
0.62, GS = 0.0035 kg/kg, i.e.,Sc(x, t = 0) = 2.17× 10−3.
Fig. 14shows the concentration of copper in solid phase in
2D. Additionally, we present three plots:Fig. 15shows the
evolution of the copper concentration in the solid phaseSc on
the input boundaryΓ i where the irrigation process occurs,
Fig. 16 showsS in an arbitrary pointx ∈ Ω, andFig. 17
s cess
o
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in leaching process literature, for example[9], and allows
to simulate the leaching process under different conditions,
for example, height and width of the heap, porosity, abso-
lute permeability, residual saturation, ratio of irrigation, acid
concentration on the input boundary of the heap, extraction
coefficient, adsorption coefficient and the consumption coef-
ficient.
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